Circolo Matematico di Palermo
The Circolo Matematico di Palermo (Mathematical Circle of Palermo) is an Italian mathematical society, founded in Palermo by Sicilian geometer Giovanni B. Guccia in 1884.[1] It began accepting foreign members in 1888,[1] and by the time of Guccia's death in 1914 it had become the foremost international mathematical society, with approximately one thousand members.[2] However, subsequently to that time it declined in influence.[1]
Publications
Rendiconti del Circolo Matematico di Palermo (Rend. Circ. Mat. Palermo, ISSN 0009-725X), the journal of the society, was published in a first series from 1885 to 1941 and in a second ongoing series beginning in 1952. It is currently published by Springer Science+Business Media; its editor-in-chief is Pasquale Vetro.[3]
Influential papers published in the Rendiconti have included the introduction of normal numbers,[4] the original publications of the Plancherel theorem[5] and Carathéodory's theorem,[6] Hermann Weyl's proof of the equidistribution theorem,[7] and one of the appendices to Henri Poincaré's "Analysis Situs".[8]
References
- ^ a b c The Mathematical Circle of Palermo, The MacTutor History of Mathematics archive, retrieved 2011-06-19.
- ^ Grattan-Guinness, Ivor (2000), Rainbow of Mathematics: A History of the Mathematical Sciences, W. W. Norton & Company, p. 656, ISBN 9780393320305, http://books.google.com/books?id=mC9GcTdHqpcC&pg=PA656 .
- ^ Rendiconti del Circolo Matematico di Palermo, Springer Science+Business Media, accessed 2011-06-19.
- ^ Borel, E. (1909), "Les probabilités dénombrables et leurs applications arithmétiques", Rendiconti del Circolo Matematico di Palermo 27: 247–271, doi:10.1007/BF03019651 .
- ^ Plancherel, Michel; Leffler, Mittag (1910), "Contribution à l'étude de la représentation d'une fonction arbitraire par les intégrales définies", Rendiconti del Circolo Matematico di Palermo 30 (1): 289–335, doi:10.1007/BF03014877 .
- ^ Carathéodory, C. (1911), "Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen", Rendiconti del Circolo Matematico di Palermo 32: 193–217 .
- ^ Weyl, H. (1910), "Über die Gibbs'sche Erscheinung und verwandte Konvergenzphänomene", Rendiconti del Circolo Matematico di Palermo 30 (1): 377–407, doi:10.1007/BF03014883 .
- ^ Poincaré, Henri (1899), "Complément à l'Analysis Situs", Rendiconti del Circolo Matematico di Palermo 13: 285–343 .
External links